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Abstract. The wave propagation on an ocean or water surface in the presence of sea ice or surface tension
is of current importance. In this paper, we investigate the (2+1) dimensional 6th-order model proposed
recently by Hărăgus-Courcelle and Il’ichev for such wave propagation. Firstly, we correct some errors in
the original derivations of this model. With computerized symbolic computation and truncated Painlevé
expansion, we then obtain an auto-Bäcklund transformation and types of the solitonic and other exact
analytic solutions to the model, with the solitary waves as a special case, able to be dealt with the
powerful Wu method. Based on the results, we later propose some possibly observable effects for the future
experiments, and in the end, provide a possible way to explain the regular structure of the open-sea ice
break-up observations.

PACS. 47.11.+j Computational methods in fluid dynamics – 05.45.Yvi Solitons – 47.35.+i Hydrodynamic
waves – 02.70.Wz Symbolic computation (computer algebra)

1 Introduction

Recently, people devote their attention to the wave propa-
gation on an ocean or water surface in the presence of sea
ice or surface tension. From the engineering standpoint,
the water-ice (or, flexural-gravity) waves are of practical
value in the studies on, e.g., the ice growth on structures,
damage to offshore constructions by floating ice sheets,
stress control for the facilities built upon the ice, and
performance of ice-breaking ships [1–8]. In the gravity-
capillary case, comparison of theoretical results and ex-
perimental data is relatively hard to perform, as seen, e.g.,
in reference [9].

Theoretical models of gravity-capillary and flexural-
gravity waves have been provided by, e.g., refer-
ences [6,10–12], among which the (2+1) dimensional
Hărăgus-Courcelle-Il’ichev model [5,6],

uxt+(uux)x+suxxxx + uxxxxxx + uyy = 0, s = ±1, (1)

has been recently proposed, where x, y and t are dimen-
sionless spatial and temporal variables, and u is a dimen-

a e-mail: gaoyt@public.bta.net.cn
b Mailing address for YTG

sionless surface deviation. Equation (1) is derived from
the (2+1) dimensional system of Euler equations for long
gravity-capillary waves of small amplitude when the di-
mensionless Bond number b is close to 1

3 (in the presence
of surface tension), and also for surface water waves in
the presence of a floating elastic ice plate. In fact, the ex-
periments [1] indicate that an ice sheet exhibits an elastic
behavior for a wide set of physical conditions. For Bond
numbers b > 1

3 , as well as for elastic plates with large ini-
tial tensions, s = −1; In the other case, for water waves
with b < 1

3 and elastic plates with low initial tensions,
s = 1. The derivations of equation (1) have been given in
reference [5] from those different cases, characterized by
different s in the end.

Equation (1) generalizes the Kadomtsev-Petviashvili
equation to the presence of higher order dispersive ef-
fects, as well as generalizes the fifth order Korteweg-de
Vries equation into (2+1) dimensions. These effects are
caused either by a surface tension with Bond number close
to 1/3, or by an elastic ice-sheet floating on the water
surface [5–7]. Topics on the Kadomtsev-Petviashvili equa-
tion can be found, e.g., in references [13–18], while on
the fifth order Korteweg-de Vries equation, e.g., in refer-
ences [5,11,19,20].
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For equation (1), reference [5] presents several approx-
imate analytic solitary-wave solutions subject to either
periodic or Dirichlet boundary conditions in the direc-
tion transverse to the propagation (i.e., the y direc-
tion), which have damped oscillations and propagate in
a channel (along the x-axis). The instability treatment
in [6] indicates that the periodic waves subject to the x-
homogeneous, y-axis perturbations, also analytic but ap-
proximate, are found to decay into a sequence of par-
allel wave guides or channels, each of which represents
the wave propagating along the x axis but localized in
the y direction. It has been claimed [6] that such a self-
channeling effect could help explain the regular structure
of ice break-up. For s = −1, reference [21] proposes some
possibly observable effects for the soliton-like liquid wave
propagation in the presence of surface tension. Other re-
lated work includes the instability and collapse of waveg-
uides on the water surface under the ice cover [8].

Symbolic computation is a new branch of artificial in-
telligence, with its remarkable feature as the permeation
of computer sciences among various fields of science and
engineering. Symbolic computation drastically increases
the ability of a computer to exactly and algorithmically
deal with the expressions, so that it is thought as the sign
of modern scientific computations [22].

In Section 2 of this paper, we will correct some errors
in the derivations of equation (1); From Section 3 to Sec-
tion 5, we will work out certain exact analytic solutions
and an auto-Bäcklund transformation to equation (1);
Section 6 will be our discussion part, where we try to
provide a way to explain the regular structure of the sea
ice break-up observations, and to propose more possibly
observable effects for the future experiments.

2 Investigation on the derivations leading
to equation (1)
We hereby point out that there appear some errors in
reference [5] on the derivations leading to equation (1).
Our corrections are as follows:

Starting from the beginning, the third equation of
the full system of Euler equations, i.e., equations (2.1)
presented in reference [5], should be

ηt + ηx φx + ηy φy = φz . (2)
The Euler system is then transformed into equation (2.2)
in reference [5], the fourth equation of which should be

φt+
1
2

ε
(
φ2

x + φ2
y + φ2

z/µ
)
+η−β�xyη+γ �2

xyη+δ ηtt = 0.

(3)
Equation (2.5) in reference [5] come out after the ex-

pansions in power series for small µ and z. The correct
form of equations (2.5) should be

ηt + ε ηx φx + ε ηy φy + �xyφ +
µ

3
�2

xyφ

+
2
15

µ2 �2
xyφ +

2
15

µ2 �2
xyφ = 0, (4)

φt +
ε

2
(
φ2

x + φ2
y

)
+ η − β �xyη + γ �2

xyη + δ ηtt = 0.

(5)

Having considered

η = η0 + µ η1 + µ2 η2 + O(µ3), (6)
φ = φ0 + µ φ1 + µ2 φ2 + O(µ3). (7)

Reference [5] looks for the waves travelling in one direc-
tion in the reference frame

η = η̂ (ξ, ζ, τ, µ) , φ = φ̂ (ξ, ζ, τ, µ) ,

ξ = x − t, ζ =
√

ε y, τ = µm t, m > 0, (8)

and investigates separately the following two cases:
(1) Long water waves beneath an ice sheet. Let m = 1,

δ = δ̂ µ, γ = γ̂ µ, ε = ε̂ µ, β = 0, and reference [5] obtains
two equations between equations (2.6) and (2.7), which
should be corrected as

− η̂0ξ − µ η̂1ξ + µ η̂0τ + ε̂ µ η̂0ξ φ̂0ξ + φ̂0ξξ + µ φ̂1ξξ

+ ε̂ µ φ̂0ζζ +
µ

3
φ̂0ξξξξ = 0,

− φ̂0ξ − µ φ̂1ξ + µ φ̂0τ +
ε̂ µ

2
φ̂2

0ξ + η̂0 + µ η̂1 + δ̂ µ η̂0ξξ

+ γ̂ µ η̂0ξξξξ = 0,

from which equation (2.8) is obtained. Equation (2.8)
should be corrected as
[
η̂0τ + ε̂ η̂0 η̂0ξ +

1
2

(
δ̂ +

1
3

)
η̂0ξξξ +

γ̂

2
η̂0ξξξξξ

]

ξ

+
ε̂

2
η̂0ζζ = 0. (9)

(2) Long water waves in the presence of surface ten-
sion. Let m = 2, δ = 0, γ = 0, ε = ε̂ µ2, β = µ ( 1/3 − α ),
α = α̂ µ, and reference [5] obtains two equations between
equations (2.8) and (2.9), which should be corrected as

− η̂0ξ − µ η̂1ξ − µ2 η̂2ξ + µ2 η̂0τ + ε̂ µ2 η̂0ξ φ̂0ξ + φ̂0ξξ

+ µ φ̂1ξξ + µ2 φ̂2ξξ + ε̂ µ2 φ̂0ζζ

+
µ

3
φ̂0ξξξξ +

µ2

3
φ̂1ξξξξ +

2 µ2

15
φ̂0ξξξξ = 0,

− φ̂0ξ − µ φ̂1ξ − µ2 φ̂2ξ + µ2 φ̂0τ +
ε̂ µ2

2
φ̂2

0ξ + η̂0

+ µ η̂1 + µ2 η̂2 − µ

3
η̂0ξξ + α̂ µ2 η̂0ξξ − µ2

3
η̂1ξξ = 0,

from which equation (2.9) is obtained. Equation (2.9)
should be corrected as
[
η̂0τ + ε̂ η̂0 η̂0ξ +

1
2

(
α̂ +

2
15

)
η̂0ξξξ − 1

9
η̂0ξξξξξ

]

ξ

+ ε̂ η̂0ζζ = 0. (10)

Finally, equations (9) and (10) can be put in the form
of equation (1) after scaling transformations.

3 Computerized symbolic computation
and truncated Painlevé expansion

In this section, we will perform computerized symbolic
computation with the truncated Painlevé expansion of the
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φ−10 : u0 = −1680 φx
4 , (13)

φ−9 : u1 = 3360 φx
2 φxx, (14)

φ−8 : u2 =
−280 sφx

2

13
− 840 φxx

2 − 1120 φx φxxx, (15)

φ−7 : u3 =
280 sφxx

13
+ 280 φxxxx, (16)

φ−6 : −507φy
2 φx

2 − 507 φt φx
3 + 31 φx

4 − 507 u4 φx
4 + 2730 s φx

2 φxx
2 + 53235 φxx

4

−3640 s φx
3 φxxx − 141960 φx φxx

2 φxxx + 70980 φx
2 φxx φxxxx

+47320 φx
2 φxxx

2 − 28392 φx
3 φxxxxx = 0, (17)

φ−5 : 507 φyy φx
4 + 1014 φx

5 u4,x + 2535 φx
4 φxt + 4056 φy φx

3 φxy + 3042 φy
2 φx

2 φxx

+5070 φt φx
3 φxx − 465 φx

4 φxx + 7605 u4 φx
4 φxx − 21840 s φx

2 φxx
3

−53235 φxx
5 + 25480 s φx

3 φxx φxxx + 473200 φx
2 φxx φxxx

2

+10010 sφx
4 φxxxx − 177450 φx

2 φxx
2 φxxxx − 473200 φx

3 φxxx φxxxx

+141960 φx
3 φxx φxxxxx + 70980 φx

4 φxxxxxx = 0, (18)

φ−4 : −39 s φy
2 φx

2 − 39 sφt φx
3 − 39 s u4 φx

4 − 6084 φx
2 φxy

2 − 2028 φx
3 φxyy

−3042 φyy φx
2 φxx − 10140 φx

3 u4,x φxx − 15210 φx
2 φxt φxx

−12168 φy φx φxy φxx − 1521 φy
2 φxx

2 − 7605 φt φx φxx
2 + 1605 φx

2 φxx
2

−22815 u4 φx
2 φxx

2 + 13650 s φxx
4 − 507 φx

4 u4,xx − 5070 φx
3 φxxt

−6084 φy φx
2 φxxy − 2028 φy

2 φx φxxx − 5070 φt φx
2 φxxx + 340 φx

3 φxxx

−10140 u4 φx
3 φxxx + 21840 s φx φxx

2 φxxx − 32760 sφx
2 φxxx

2

−118300 φxx
2 φxxx

2 − 473200 φx φxxx
3 − 49140 sφx

2 φxx φxxxx

+177450 φxx
3 φxxxx + 236600 φx φxx φxxx φxxxx + 502775 φx

2 φxxxx
2

−12376 sφx
3 φxxxxx − 70980 φx φxx

2 φxxxxx + 236600 φx
2 φxxx φxxxxx

−354900 φx
2 φxx φxxxxxx − 60840 φx

3 φxxxxxxx = 0, (19)

φ−3 : 13 s φyy φx
2 + 26 sφx

3 u4,x + 39 s φx
2 φxt + 52 sφy φx φxy + 13 s φy

2 φxx

+39 sφt φx φxx + 78 s u4 φx
2 φxx + 2028 φxy

2 φxx + 2028 φx φxyy φxx

+507 φyy φxx
2 + 5070 φx u4,x φxx

2 + 2535 φxt φxx
2 − 225 φxx

3

+2535 u4 φxx
3 + 1014 φx

2 φxx u4,xx + 5070 φx φxx φxxt + 4056 φx φxy φxxy

+2028 φy φxx φxxy + 1014 φx
2 φxxyy + 676 φyy φx φxxx + 3380 φx

2 u4,x φxxx

+3380 φx φxt φxxx + 1352 φy φxy φxxx + 1690 φt φxx φxxx − 620 φx φxx φxxx

+10140 u4 φx φxx φxxx − 3640 s φxx φxxx
2 + 1690 φx

2 φxxxt + 55 φx
2 φxxxx

+1352 φy φx φxxxy + 169 φy
2 φxxxx + 845 φt φx φxxxx + 2535 u4 φx

2 φxxxx

+18200 sφx φxxx φxxxx + 118300 φxxx
2 φxxxx − 88725 φxx φxxxx

2

+8736 s φx φxx φxxxxx − 47320 φxx φxxx φxxxxx − 165620 φx φxxxx φxxxxx

+3276 s φx
2 φxxxxxx + 35490 φxx

2 φxxxxxx + 47320 φx φxxx φxxxxxx

+60840 φx φxx φxxxxxxx + 7605 φx
2 φxxxxxxxx = 0, (20)

dependent variable in a Laurent series about the pole man-
ifold φ(x, y, t) = 0 in the sense of [13,16,20,23]:

u(x, y, t) = φ(x, y, t)−J
J∑

l=0

ul(x, y, t)φ(x, y, t)l, (11)

where ul(x, y, t) and φ(x, y, t) are both analytic functions
with u0(x, y, t) �= 0 and φx(x, y, t) �= 0, while J is the
natural number determined via the leading-order analysis
as J = 4, so that

u(x, y, t) = φ(x, y, t)−4
4∑

l=0

ul(x, y, t)φ(x, y, t)l. (12)

With symbolic computation, we substitute expres-
sion (12) into equation (1), make the coefficients of like
powers of φ to vanish, and after manipulations, get the
set of Painlevé-Bäcklund equations as follows:

see equations (13, 14, 15, 16, 17, 18, 19, 20) above and
(21, 22, 23) in next pages.

4 Bäcklund transformation and format
of solutions

What we have obtained is the set of equations (12–23),
which constitutes an auto-Bäcklund transformation, since
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φ−2 : −26 sφxy
2 − 26 s φx φxyy − 13 s φyy φxx − 78 sφx u4,x φxx − 39 s φxt φxx

−39 s u4 φxx
2 − 13 s φx

2 u4,xx − 507 φxx
2 u4,xx − 39 s φx φxxt − 1014 φxxy

2

−26 s φy φxxy − 1014 φxx φxxyy − 13 sφt φxxx − 52 s u4 φx φxxx

−676 φxyy φxxx − 3380 u4,x φxx φxxx − 676 φx u4,xx φxxx − 1690 φxxt φxxx

+150 φxxx
2 − 1690 u4 φxxx

2 − 1690 φxx φxxxt − 1352 φxy φxxxy

−676 φx φxxxyy − 169 φyy φxxxx − 1690 φx u4,x φxxxx − 845 φxt φxxxx

+85 φxx φxxxx − 2535 u4 φxx φxxxx − 2730 sφxxxx
2 − 845 φx φxxxxt

−338 φy φxxxxy − 169 φt φxxxxx − 78φx φxxxxx − 1014 u4 φx φxxxxx

−2912 s φxxx φxxxxx + 26026 φxxxxx
2 − 1456 sφxx φxxxxxx

+11830 φxxxx φxxxxxx − 1456 s φx φxxxxxxx − 20280 φxxx φxxxxxxx

−7605 φxx φxxxxxxxx − 1690 φx φxxxxxxxxx = 0, (21)

φ−1 : sφxx u4,xx + s φxxyy + 2 s u4,x φxxx + sφxxxt + s u4 φxxxx + 13 u4,xx φxxxx

+13 φxxxxyy + 26 u4,x φxxxxx + 13 φxxxxxt + φxxxxxx + 13 u4 φxxxxxx

+14 s φxxxxxxxx + 13 φxxxxxxxxxx = 0, (22)

φ0 : u4,xt + (u4 u4,x)x + s u4,xxxx + u4,xxxxxx + u4,yy = 0. (23)

u(x, y, t) =
280 α2 eα x+y β(t)+γ(t)

(
13 α2 + s

)

13 [1 + eα x+y β(t)+γ(t)]
− 280 α2 e2 α x+2 y β(t)+2γ(t)

(
91α2 + s

)

13 [1 + eα x+y β(t)+γ(t)]
2

+
3360 α4 e3 α x+3 y β(t)+3 γ(t)

[1 + eα x+y β(t)+γ(t)]
3 − 1680 α4 e4 α x+4 y β(t)+4 γ(t)

[1 + eα x+y β(t)+γ(t)]
4

+
31

507
+

7 α4

3
− 70 α2 s

39
− β(t)2

α2
− y β′(t)

α
− γ′(t)

α

=
31

507
− 98 α4

3
+

140 α2 s

39
− β(t)2

α2
− 105 α4 Tanh4

[
α x + y β(t) + γ(t)

2

]

+
70α2

(
26α2 − s

)

13
Tanh2

[
α x + y β(t) + γ(t)

2

]
− y β′(t)

α
− γ′(t)

α
, (29)

the whole set is mutually consistent, or, explicitly solvable
with respect to φ(x, y, t), u0(x, y, t), u1(x, y, t), u2(x, y, t),
u3(x, y, t) and u4(x, y, t). Solvable examples are as below:

For the solitonic features, we begin to construct a trial
solution,

φ(x, y, t) = 1 + ex α(t)+y β(t)+γ(t), (24)

where the functions α(t), β(t) and γ(t) are sufficiently
differentiable, with α(t) �= 0 since φx �= 0. The x- and y-
linear form is used solely for the simplification of the com-
putation work. Using expression (24), we perform sym-
bolic computation, and get

φ−6 : u4(x, y, t) =
31
507

+
7 α(t)4

3

− 70 α(t)2 s

39
− β(t)2

α(t)2
− y β′(t)

α(t)
− γ′(t)

α(t)
, (25)

φ−5 : α′(t) = 0 ⇒ α = const. (26)

φ0 : satisfied. (27)

Then, the coefficients of φ−4, φ−3, φ−2 and φ−1 give rise
to the same equation,

φ−4, φ−3, φ−2 φ−1 : 21970 α6 + 31 s − 3549 α4 s = 0.
(28)

With the relevant expressions combined together, we in
fact arrive at a format of exact analytic solutions to equa-
tion (1), as follows,

see equation (29) above

in which the constant α needs to satisfy constraint (28).
With the travelling-wave assumptions, i.e., γ(t) =

γ1 t + γ2, while β, γ1 and γ2 are constants, the aforemen-
tioned set of Bäcklund transformation turns out to be a
system of algebraic polynomial equations. We can make
use of the Wu elimination method, which is a very suffi-
cient method to solve for the systems of algebraic polyno-
mial equations with many unknowns [24–26], along with
symbolic computation, to get the solitary-wave solutions
to equation (1), which are pictured out in Figures 1 and 6,
and are in fact a special case of format (29).
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uσ
I (x, y, t) =

31

507
+

14 s

507

[(
−120

√
93 − 1207 s

) 1
3

+
(
120

√
93 − 1207 s

) 1
3

+ 7 s

]

− 49

25350

[(
−120

√
93 − 1207 s

) 1
3

+
(
120

√
93 − 1207 s

) 1
3

+ 7 s

]2

− 130 β(t)2

(−120
√

93 − 1207 s
) 1

3 +
(
120

√
93 − 1207 s

) 1
3 + 7 s

+
7

169

[(
−120

√
93 − 1207 s

) 1
3

+
(
120

√
93 − 1207 s

) 1
3

+ 7 s

]

×


−s +

(−120
√

93 − 1207 s
) 1

3 +
(
120

√
93 − 1207 s

) 1
3 + 7 s

5





× Tanh2







σ

√

(−120
√

93−1207 s)
1
3 +(120

√
93−1207 s)

1
3 +7 s

√
130

x + y β(t) + γ(t)

2







− 21

3380

[(
−120

√
93 − 1207 s

) 1
3

+
(
120

√
93 − 1207 s

) 1
3

+ 7 s

]2

× Tanh4







σ

√

(−120
√

93−1207 s)
1
3 +(120

√
93−1207 s)

1
3 +7 s

√
130

x + y β(t) + γ(t)

2







−
√

130 σ y β′(t)
√(−120

√
93 − 1207 s

) 1
3 +

(
120

√
93 − 1207 s

) 1
3 + 7 s

−
√

130 σ γ′(t)
√(−120

√
93 − 1207 s

) 1
3 +

(
120

√
93 − 1207 s

) 1
3 + 7 s

. (35)

5 Families of exact analytic solutions

By virtue of the transformation

α2 = Ψ +
7 s

130
. (30)

Constraint (28) becomes

Ψ3 − 147 Ψ
16900

+
1207 s

1098500
= 0. (31)

Make use of the Cardan formulae (as seen, e.g., in
Ref. [27]), and we find 3 roots for Ψ, as below. For each
root Ψn, we have

ασ
n = σ

√

Ψn +
7 s

130
with σ = ±1 and

n = I, II, III. (32)

Type I: Family I-a and Family I-b

For

ΨI =

(−120
√

93 − 1207 s
)1

3 +
(
120

√
93 − 1207 s

)1
3

130
,

(39)

or
ασ

I =

σ

√(−120
√

93 − 1207 s
)1

3 +
(
120

√
93 − 1207 s

)1
3 + 7 s√

130
.

(40)

Format (29) gives rise to the first type of exact analytic
solutions to equation (1), as follows,

see equation (35) above.

There exist 2 families of solutions in Type I, named as
Family I-a and Family I-b, for σ = ±1 separately.

For s = −1, real β(t) and real γ(t), Type I becomes
solitonic, which is of special interest and going to be dis-
cussed later.

Type II: Family II-a and Family II-b

For

ΨII =

(−1 − i
√

3
) (−120

√
93 − 1207 s

)1
3

260

+

(−1 + i
√

3
) (

120
√

93 − 1207 s
)1

3

260
, (36)

or
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ασ
II = σ

√
(−1 − i

√
3
) (−120

√
93 − 1207 s

) 1
3

260
+

(−1 + i
√

3
) (

120
√

93 − 1207 s
) 1

3

260
+

7 s

130
, (37)

uσ
II(x, y, t) =

31

507
−

98

[
(−1−i

√
3) (−120

√
93−1207 s)

1
3

260
+

(−1+i
√

3) (120
√

93−1207 s)
1
3

260
+ 7 s

130

]2

3

+

140

[
(−1−i

√
3) (−120

√
93−1207 s)

1
3

260
+

(−1+i
√

3) (120
√

93−1207 s)
1
3

260
+ 7 s

130

]

s

39

− β(t)2

(−1−i
√

3) (−120
√

93−1207 s)
1
3

260
+

(−1+i
√

3) (120
√

93−1207 s)
1
3

260
+ 7 s

130

+

70

{

26

[
(−1−i

√
3) (−120

√
93−1207 s)
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see equation (37) above.
Format (29) gives rise to the second type of exact analytic
solutions to equation (1),

see equation (38) above.
There exist 2 families of solutions in this type, named as
Family II-a and Family II-b, for σ = ±1 separately.

Type III: Family III-a and Family III-b

For
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or

see equation (40) in next page.

Format (29) gives rise to the third type of exact analytic
solutions to equation (1),

see equation (41) in next page.

There exist 2 families of solutions in this type, named as
Family III-a and Family III-b, for σ = ±1 separately.

Altogether, we can find 3 types, or 6 families, of the
exact analytic solutions for equation (1).

6 Discussions

Of special interest are the solitonic solutions from Type I,
for s = −1, real β(t) and γ(t), which has been considered
in our previous work, i.e., reference [21], to some extent.
This interesting case deserves more detailed discussions,
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as follows, with all the figures plotted with the vertical
direction as −u(x, y, t) for a clear viewpoint:
1. Equation (1) for s = −1 holds for the waves in the

presence of large surface tension, when the dimension-
less Bond number Bo ia larger than, but has to be close
to, B∗

o , where the critical value B∗
o = 1/3, while the

Bond number Bo = T/(ρw g H2) (see Refs. [5,6,8] for
details), where T is the value of surface tension, ρw is
the liquid density, g is the acceleration of gravitation,
and H is the liquid depth.

2. The auto-Bäcklund transformation, or the set of equa-
tions (12–23), works as a system of equations relat-
ing a “seed” solution of equation (1) to another (more
complicated) solution of equation (1) itself. This way
we would, in principle at least, be able to progres-
sively construct more and more complicated solutions
of equation (1). For example, if the seed is the solitonic

expression (35), we could construct more complicated
“solitonic” solutions of equation (1).

3. Figure 1, the same as the first plot in our paper [21],
provides us with a solitary-wave picture for Family I-a
in expression (35) taken at a fixed time, the specific
look at which with different values of y is given in
Figure 2.

4. Compared with Figure 1, we see that Figure 3 indicates
that the transverse influence varies as β changes, Fig-
ure 4 shows the propagation of the wave as time goes
on, and Figure 5 reverses the sign of σ for Family I-b.
Please note that the values chosen for the free parame-
ters and functions occurring in the solitonic solutions.
are purely for the purpose of picture drawing and qual-
itative analysis. In reality, the detailed application of
the solitonic solutions requires a judicious choice of
those parameters and functions.
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Fig. 1. Observable solution surface u(x, y, t) of equation (1)
describing a solitary wave via Family I-a in expression (35),
with the parameters chosen as s = −1, σ = 1, β(t) = 0.3,
γ(t) = 2 t + 2, and then, t = 0. This is a photograph taken at
a fixed time.
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Fig. 2. Specific look at Figure 1, with two different values of y.
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Fig. 3. u(x, y, t) via expression (35), the same as Figure 1
except that β = 0.6 with the transverse influence changing.

5. As shown in Figures 1, 3, 4 and 5, the transverse influ-
ences can be characterized by the x ∼ y slopes on the
wave positions. Figure 2 further illustrates this feature:
A slope implies that at the same time, two observers
at different y1(= 1) and y2(= 13) are able to see the
wave locating at different x1(� −8) and x2(� −21).
Hopefully, future experiments could investigate such a
two-dimensional, possibly observable effect.

6. Along the propagation direction and for a fixed trans-
verse position y(= 0), Figures 7 and 8 picture out ex-
pression (35), the soliton-like solutions to equation (1),
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Fig. 4. u(x, y, t) via expression (35) with t = 2, i.e., another
picture taken at a different time. Other values remain the same
as in Figure 1.
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Fig. 5. u(x, y, t) in expression (35) with σ = −1, showing
Family I-b. The rest will be the same as Figure 1.
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Fig. 6. The same as Figure 1 except that t varies but y is fixed
as zero. This is a travelling-wave picture, for Figures 7 and 8
to be compared with.

with different non-travelling-wave functions assumed.
The travelling-wave-natured Figure 6 is presented for
the comparison purpose. Figures 7 and 8 address that
the situation along the propagation direction could be
fairly complicated beyond the travelling waves, result-
ing in the non-constant vertical shifts of the waves. The
effect is also possibly observable with the future experi-
ments. Figures 7 and 8 are the same as the second and
third plots in our paper [21].
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Fig. 7. Observable soliton-like solution surface u(x, y, t) of
equation (1) via expression (35). The parameters are the same
as those in Figure 6 except that γ(t) = 2 t + 2 + Sin (3 t) /50.
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Fig. 8. The same as Figure 7 except that γ(t) = 2 t + 2 +
1
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[∑∞
n=−∞ e−10 (t+3 n)2

]
.

7. On the other hand, along the transverse direction and
with a fixed x(= 0), Figures 10 and 11 deal with ex-
pression (35) as well, with different non-travelling-wave
functions assigned. Figure 9 works here as a travelling-
wave picture for the comparison purpose. Figures 10
and 11 make clear that the situation along the trans-
verse direction could also be complicated beyond the
travelling waves, resulting in the non-constant vertical
shifts of the waves. Those effects might be observable
with the future experiments as well. Again, an one-
dimensional observation will not work. Figure 10 is the
same as the fourth plot in our paper [21].

8. From the open sea, i.e., without any influence of the
y- boundary conditions, as observed in St. Anthony
Bight, Newfoundland and reported in reference [2], the
incoming sea waves incident on the ice edge cause the
break-up of the seemingly robust fast ice in only several
hours. Especially, as shown in Figure 1 of reference [2],
the cracking of shore-fast ice, somehow, occurs at uni-
form intervals, resulting in the formation of floating
strips of approximately equal width.
This ice-damage observation might be explained with
the help of our solutions. As seen in Figures 7, 8, 10
and 11, the non-constant vertical shifts of the waves
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Fig. 9. The same as Figure 6 except that y changes with x = 0
fixed, which is a travelling-wave picture for Figures 10 and 11
to be compared with.
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Fig. 10. Observable soliton-like solution surface u(x, y, t) of
equation (1) via expression (35), with the fixed x = 0 and
changeable y. The rest will be the same as Figure 7.
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Fig. 11. Observable soliton-like solution surface u(x, y, t) of
equation (1) via expression (35), with the fixed x = 0 and
changeable y. The rest will be the same as Figure 8.

could be periodic when the arbitrary function γ(t) is
chosen to incorporate a periodic feature. Thus, mathe-
matically allowed by equation (1), and physically inci-
dent from open water and normal to the ice edge, the
periodic waves in Figures 7, 8, 10 and 11 have their
crests/troughs located at an approximately equal dis-
tance from each other. It has been claimed [3,4] that
the high curvatures and pressures developed near the



450 The European Physical Journal B

wave crests and troughs, propagating under the elas-
tic ice sheet, cause cracking to occur, resulting in the
formation of floating blocks of ice.
Thus, there appears the possibility that we have pre-
sented a way to explain the parallel cracks in ice, which
also have uniform intervals. The differences between
our possibility and those proposed in references [5,
6] are: (1) Ours do not rely on any boundary con-
ditions, especially none in the y direction, which is
in agreement with the open sea observations reported
in reference [2]. (2) Ours are the exact solutions, not
approximate. (3) Ours go beyond the travelling soli-
tary waves.

7 Conclusions

The studies on the liquid surfaces for oceans, rivers, liq-
uid propellant for rockets, aviation kerosene etc., are of
current interest.

In this paper, we have investigated the (2+1) dimen-
sional Hărăgus-Courcelle-Il’ichev model for the liquid sur-
face waves in the presence of sea ice or surface tension.
Our results are as follows:

– We have corrected some errors in the original deriva-
tions of this model;

– We have performed the computerized symbolic com-
putation and truncated Painlevé expansion to obtain
an auto-Bäcklund transformation for this model;

– We have performed the computerized symbolic com-
putation with auto-Bäcklund transformation to obtain
three types of the solitonic and other exact analytic
solutions to this model, with the solitary waves as a
special case;

– We have discussed the above results, with 11 figures
presented;

– We have proposed certain possibly observable effects
for the future experiments;

– We have provided a possibility to explain the regular
structure of the sea ice break-up observations.
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